(x^2)+(8^2)=(12^2)

Simple and best practice solution for (x^2)+(8^2)=(12^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x^2)+(8^2)=(12^2) equation:



(x^2)+(8^2)=(12^2)
We move all terms to the left:
(x^2)+(8^2)-((12^2))=0
determiningTheFunctionDomain x^2+8^2-12^2=0
We add all the numbers together, and all the variables
x^2-80=0
a = 1; b = 0; c = -80;
Δ = b2-4ac
Δ = 02-4·1·(-80)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*1}=\frac{0-8\sqrt{5}}{2} =-\frac{8\sqrt{5}}{2} =-4\sqrt{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*1}=\frac{0+8\sqrt{5}}{2} =\frac{8\sqrt{5}}{2} =4\sqrt{5} $

See similar equations:

| -4x-5(-5x-3)=120 | | 2x+43=45 | | 2x+50+90+14x+8=180 | | 8(9d+7)=-31 | | -5(8x+2)-7(5x+7)=16 | | 184=3x+4(3x+16) | | 14-x+4=3x+27-10 | | 2x+28+90+15x+28=180 | | -6+4p=6p | | 91+10x-21=180 | | 5x+28+57+90=180 | | -3(2+8a)=24 | | -13-5y=11 | | x+43=45 | | 9n-16=6n+9 | | 2u+16=48 | | 3x+6(5x+18)=-189 | | 3x-4=2(5-2x) | | x-46+x-64+90=180 | | 2/u+16=48 | | -3(x-2)-3x=+7 | | 33=-4c-5c | | 10x+5x+90=180 | | 4(4+2a)-(a+2)=7 | | 158=x+124+x+42 | | -2x+57=45 | | 2x+27+90+4x+33=180 | | 107+9x+35=180 | | -d/5=-41 | | 2(3x+1)=-3(4x-5) | | x+22+90+56=180 | | 1+6(m+6)=85 |

Equations solver categories